앞서 (1)편에서 얘기했던, 4가지의 과정 중에서 이번에는 Feature extraction에 대해서 얘기해볼것이다. (가장 첫번째 단계인 데이터 수집 및 준비 단계는 이미 이루어졌다고 가정한다.) 0. Feature Extraction Feature란, 어떤 결과의 원인에 해당하는 일이라고 설명했다. 우리가 머신러닝을 하는 대표적인 이유가 예측을 하기 위한 것이다. 그렇다면 "어떤 조건에 대한", "어떤 값에 대한" 예측을 할 것인지가 정해져야 하는데, 그 "조건"과 "값"이 원인 요소에 해당하는 것이고. 그것을 우리는 Feature라고 한다. 만약에 우리가 지도 학습을 하게 되는거라면, 다양한 이미 답이 만들어져 있는 것으로 학습을 시키게 될 것이다. 가령, 온도와 아이스크림 판매량 데이터를 가지고,..